Chemical Bonding

Chemical Bonds

- Forces that hold atoms together
- Ionic bonds are the forces of attraction between ions
 - ions formed by electron transfer
 - electrostatic forces
- Covalent bonds are the forces of attraction between two atoms which are sharing electrons

Ionic Bonds

- Results from reaction between Metal and Nonmetal
- Metal loses electrons to form cation, Nonmetal gains electrons to form anion
- Ionic bond is the attraction between a positive ion and negative ion
- Larger Charge = Stronger Attraction
- Smaller Ion = Stronger Attraction
- No bond is 100% ionic!!
- Electrostatic attraction nondirectional
 - no direct anion-cation pair, No ionic molecule
 - chemical formula is empirical formula, simply giving the ratio of ions based on charge balance
- lons arranged in a pattern called a crystal lattice
 - maximizes attractions between + and ions

Ionic Bonds

• Ionic bonds usually are formed by bonding between metals and nonmetals.

Ionic Bonds

• One cation can bond to multiple (more than one) anion

IONic Bonding

- electrons are transferred between valence shells of atoms
- ionic compounds are made of ions

 ionic compounds are called Salts or Crystals

IONic bonding

• Always formed between metals and non-metals

Properties of lonic Compounds hard solid @ 22°C high mp temperatures

 good conductors in liquid phase or dissolved in water (aq)

Covalent Bonds

- Typical of molecular substances
- Atoms bond together to form molecules
 - strong attraction
- Sharing pairs of electrons
- Molecules attracted to each other weakly
- Often found between nonmetal atoms

Covalent Bonds

- Each shared pair represented as a line in a structural formula

 \rightarrow Example: **H** - **H**

*this is a single covalent bond

**Goal of bonding is to fill the outer energy level and become stable

Covalent Bonds – Electron dot diagrams

 Each hydrogen shares one pair of electrons with the oxygen atom **Covalent Bonding**

- Pairs of e- are shared molecules between non-metal ator
- electronegativity *difference* < 2.0
- forms polyatomic ions

Properties of Molecular Substances Covalent bonding

- Low m.p. temp and b.p. temps
- relatively soft solids as compared to ionic compounds
- nonconductors of electricity in any phase

Electronegativity

- Measure of the ability of an atom to attract shared electrons
 - Larger electronegativity means atom attracts more strongly
 - Values 0.7 to 4.0
- Increases across period (left to right) on Periodic Table
- Decreases down group (top to bottom) on Periodic Table
- Larger difference in electronegativities means more polar bond

						Incre	asing	electr	onega	tivity						
				Н 2.1												
Li 1.0	Be 1.5											В 2.0	C 2.5	N 3.0	0 3.5	F 4.0
Na 0.9	Mg 1.2											Al 1.5	Si 1.8	Р 2.1	S 2.5	Cl 3.0
К 0.8	Ca 1.0	Sc 1.3	Ti 1.5	V 1.6	Cr 1.6	Mn 1.5	Fe 1.8	Co 1.9	Ni 1.9	Cu 1.9	Zn 1.6	Ga 1.6	Ge 1.8	As 2.0	Se 2.4	Br 2.8
Rb 0.8	Sr 1.0	ү 1.2	Zr 1.4	Nb 1.6	Mo 1.8	Тс 1.9	Ru 2.2	Rh 2.2	Pd 2.2	Ag 1.9	Cd 1.7	In 1.7	Sn 1.8	Sb 1.9	Te 2.1	I 2.5
Cs 0.7	Ba 0.9	La-Lu 1.0-1.2	Hf 1.3	Та 1.5	W 1.7	Re 1.9	Os 2.2	Ir 2.2	Pt 2.2	Au 2.4	Hg 1.9	Tl 1.8	Pb 1.9	Bi 1.9	Ро 2.0	At 2.2
Fr 0.7	Ra 0.9	Ac 1.1	Th 1.3	Pa 1.4	U 1.4	Np-No 1.4-1.3										

Key	

Decreasing electronegativity

< 1.5

1.5-1.9

2.0-2.9

3.0-4.0

Drawing ionic compounds using Lewis Dot Structures

- Symbol represents the KERNEL of the atom (nucleus and inner e-)
- dots represent valence e⁻

This is the finished Lewis Dot Structure

- Step 1 after checking that it is IONIC
 Determine which atom will be the ⁺ion
 Determine which atom will be the ⁻ ion
- Step 2
 - Write the symbol for the + ion first.
 - NO DOTS
 - Draw the e- dot diagram for the [–] ion
 - COMPLETE outer shell
- Step 3
 - Enclose both in brackets and show each charge

Draw the Lewis Diagrams

LiF
MgO
CaCl₂
K₂S

Methane CH₄

This is the finished Lewis dot structure

Step 1

– count total valence e⁻ involved

- Step 2
 - connect the central atom (usually the first in the formula) to the others with single bonds
- Step 3
 - complete valence shells of outer atoms
- Step 4
 - add any extra e⁻ to central atom

IF the central atom has 8 valence e⁻ surrounding it . . YOU'RE DONE!

Electron Arrangements And Ion Charge

- We know
 - Group 1A metals form ions with +1 charge
 - Group 2A metals form ions with +2 charge
 - Group 7A nonmetals form ions with -1 charge
 - Group 6A nonmetals form ions with -2 charge
 - Group 8A nonmetals do not form ions, in fact they are extremely unreactive

Electron Arrangements and Ion Charge

- Representative Metals form cations by losing enough electrons to get the same electron configuration as the previous noble gas
- Nonmetals form anions by gaining enough electrons to get the same electron configuration as the next noble gas

on g
g

Electron Arrangements and Ionic Bonding

- Representative metals lose their valence electrons to form cations
- Nonmetals gain electrons so their valence shell has the same electron arrangement as the next noble gas
- There have to be enough electrons from the metals atoms to supply the needed electrons for the nonmetal atoms

 Allows us to predict the formulas of ionic compounds
- In Polyatomic ions, the atoms in the ion are connected with covalent bonds. The ions are attracted to oppositely charged ions to form an ionic compound

Properties of Ionic Compounds

- All solids at room temperature
 - Melting points greater than 300°C
- Liquid state conducts electricity, solid state does not
 - Liquid = molten
- Brittle and Hard
- Often soluble in water, and when dissolved the solution becomes an electrical conductor
 - When ionic compounds containing polyatomic ions dissolve, the covalent bonds holding the polyatomic ion do not break, the ion stays together even though it separates from the other ion
 - All strong electrolytes

Lewis Symbols of Atoms and Ions

- Also known as electron dot symbols
- Use symbol of element to represent nucleus and inner electrons
- Use dots around the symbol to represent valence electrons
 - put one electron on each side first, then pair
- Elements in the same group have the same Lewis symbol
 - Because they have the same number of valence electrons
- Cations have Lewis symbols without valence electrons
- Anions have Lewis symbols with 8 valence electrons

Writing Lewis Structures of Molecules

- Count the total number of valence electrons from all the atoms
- Attach the atoms together with one pair of electrons
 - A line is often used as shorthand for a pair of electrons that attach atoms together
- Arrange the remaining electrons in pairs so that all hydrogen atoms have 2 electrons (1 bond) and other atoms have 8 electrons (combination of bonding and nonbonding)
- Occasionally atoms may violate this rule
 - Nonbonding pairs of electrons are also know as Lone Pairs

Covalent Bonds

- Single Covalent Bond the atoms share 2 electrons,
 (1 pair)
- Double Covalent Bond the atoms share 4 electrons,
 (2 pairs)
- Triple Covalent Bond the atoms share 6 electrons,
 (3 pairs)
- Bond Strength = Triple > Double > Single
 - For bonds between same atoms, $C \equiv N > C = N > C = N$
 - Though Double not 2x the strength of Single and Triple not 3x the strength of Single
- Bond Length = Single > Double > Triple
 - For bonds between same atoms, C—N > C=N > C=N

DOUBLE bond

- atoms that share two e- pairs (4 e-)

TRIPLE bond

- atoms that share three e- pairs (6 e-)

Draw Lewis Dot Structures

You may represent valence electrons from different atoms with the following symbols x,

 $\mathbb{C}\mathbf{O}_2$

NH₃

 \cap

"

Draw the Lewis Dot Diagram for polyatomic ions

- Count all valence e- needed for covalent bonding
- Add or subtract other electrons based on the charge

REMEMBER!

A *positive* charge means it *LOST* electrons!!!!!

Draw Polyatomics

- Ammonium
- Sulfate

Problems with Lewis Structures

- Some atoms do not tend to follow the octet rule
 - B and Be often found octet deficient
 - Elements in the 3rd Period or below often have expanded octets
- Some molecules have an odd number of electrons
- Impossible to accurately draw Lewis structure of molecules that exhibit resonance
- Sometimes the Lewis Structure does not accurately describe a structure that explains all the observed properties of the molecule
- The paramagnetic behavior of O₂

Hydrogen "Bonding"

- Strong polar attraction

 Like magnets
- Occurs ONLY between H of one molecule and N, O, F of another H "bond"

H is shared between 2 atoms of OXYGEN or 2 atoms of NITROGEN or 2 atoms of FLUORINE Of 2 different molecules

Why does H "bonding" occur?

- Nitrogen, Oxygen and Fluorine
 - small atoms with strong nuclear charges
 - powerful atoms
 - very high electronegativities

Which substance has the highest boiling point?

- H₂O
- WHY?

Fluorine has the highest e-neg,
SO
HF will experience the
strongest H bonding and ∴
needs the most energy to
weaken the i.m.f. and boil

Some Geometric Figures

38

Linear •

- 2 atoms on opposite sides of central atom
- 180° bond angles

Trigonal Planar ٠

- 3 atoms form a triangle around the central atom
- Planar
- 120° bond angles
- **Tetrahedral** •
 - 4 surrounding atoms form a tetrahedron around the central atom
 - 109.5° bond angles

Table 11.4Arrangements of Electron Pairs and the Resulting Molecular Structures for Two,Three, and Four Electron Pairs

Case	Number of Electron Pairs	Bonds	Electron Pair Arrangement	Ball-and- Stick Model	Angle Between Pairs	Molecular Structure	Partial Lewis Structure	Ball-and- Stick Model	Example
1	2	2	Linear :		180°	Linear	A—B—A	A-B-A	BeF ₂
2	3	3	Trigonal planar (triangular)	120*	120°	Trigonal planar (triangular)	A A B A	AAAAAAAAAAAAA	
3	4	4	Tetrahedral	109.5	5° 109.5°	Tetrahedral	A - B - A	A A A A A A A A A A A A A A A A A A A	CH4
4	4	3	Tetrahedral	109.5	109.5°	Trigonal pyramid	$A - \frac{\ddot{B}}{\begin{vmatrix} A \\ A \end{vmatrix}} - A$	a Ba	NH3
5	4	2	Tetrahedral	:	• 109.5°	Bent or V-shaped	$A \longrightarrow \overset{.}{B} \longrightarrow A$	A B A	H ₂ O