Effect of Drugs on Rabbit Intestine

By
Mustafa Ahmed Jasim
(BVMS, M.Sc., PhD)
Pharmacology &
Toxicology

Background

- Intestine are Involuntary structure with myogenic contraction (spontaneous rhythmic contraction) which undergo control of nervous system.
- Intestine is composed of duodenum, jejunum & ileum
- Two types of nervous control; Autonomic and Enteric.
- Autonomic nervous control include Parasympathetic and sympathetic.
- Parasympathetic intestinal control through <u>cholinergic</u> {Muscarinic (M₃) and nicotinic
 (Neuronal type)} receptors.
- Parasympathetic control will (↑) intestinal smooth muscle motility (Stimulant or spasmodic effect)
- Sympathetic intestinal control through Adrenergic $\{\alpha_1 \text{ and } \beta_2\}$ receptors.
- Sympathetic control will (↓) intestinal smooth muscle motility (Relaxant or spasmolytic effect)
- Enteric intestinal control mainly through Histaminergic, Serotinergic and Purinergic receptors.
- Enteric control (↑) intestinal smooth muscle motility (Stimulant or spasmodic effect).

Materials and Methods

Animal

Rabbit (1.5-2.5 kg)

Drugs

- Nicotine.
- Acetylcholine.
- Adrenaline.
- Atropine.
- Histamine.
- Barium Chloride.
- Magnesium Chloride .
- Calcium chloride.

Instruments

- Kymograph apparatus set which composed from:

{ Kymograph apparatus, Organ bath and Ringer or Tyrodes solution (for jejunum)}.

Parts of Kymograph Apparatus

Components of Tyrodes Solution

Ingredient	Quantity
NaCl	16 g
KCl	0.4 g
MgCl	1.5 g
NaHCO ₃	2 g
NaH_2PO_4	0.1 g
Glucose	4 g
CaCl ₂	0.4 g
Distilled water	2 L

N= normal

Observations and Explanations

Drug	Observation	Explanation
Acetylcholine		
Nicotine		
Adrenaline		
Atropine		
Histamine		
Barium Chloride		
Calcium Chloride		

Effect Of Acetylcholine and Neuromuscular Blocking Agents On Skeletal Muscles of Frog

By
Mustafa Ahmed Jasim
(BVMS, M.Sc., PhD)
Pharmacology & Toxicology

Background

- Neuromuscular-blocking drugs block neuromuscular transmission at the neuromuscular junction causing paralysis of the affected skeletal muscles. This effect is accomplished via their action on the post-synaptic acetylcholine receptors (Muscular type nicotinic receptor (Nm) }.
- The neuromuscular blocking agents are used primarily in conjugation with general
 anesthetics to provide muscle relaxation for surgery, while the <u>centrally acting muscle</u>
 <u>relaxants</u> are used mainly for painful muscle spasms and spastic neurological condition.
- Broadly, there are <u>two</u> types of neuromuscular blocking agents; Non-depolarizing neuromuscular blocking agents and the depolarizing neuromuscular blocking agents.
- Non-depolarizing neuromuscular blocking agents like (D-tubocuranin, Gallamine and Pancuronium) do not depolarizing the motor end plate of the skeletal muscle.
- The depolarizing agents like (Succinylcholine) work by depolarizing the plasma membrane of the muscle fiber, similar to Acetylcholine.

Non-depolarizing agents

Depolarizing agents

Materials and Methods

Animal tissue:

Frog (20 g) / Rectus abdominus or Sartorius muscle

Drugs:

- Acetylcholine.
- D-tubocuranin.
- Succinylcholine
- Nicotine.
- Physostigmine
- Instruments
 - Kymograph apparatus set which composed from:

{ Kymograph apparatus, Organ bath, and Ringer or Tyrodes solution}.

Parts of Kymograph Apparatus

Observations and Explanations

Drug	Observation	Explanation
Acetylcholine		
Nicotine		
D-tubocurarine		
Physostigmine		
Succinylcholine		