ENZYMES

A protein with catalytic properties due to its power of specific activation

Chemical reactions

- Chemical reactions need an initial input of energy =
 THE ACTIVATION ENERGY
- During this part of the reaction the molecules are said to be in a transition state.

Reaction pathway

Making reactions go faster

- Increasing the temperature make molecules move faster
- Biological systems are very sensitive to temperature changes.
- Enzymes can increase the rate of reactions without increasing the temperature.
- □ They do this by lowering the activation energy.
- □ They create **a new reaction pathway** "a short cut"

An enzyme controlled pathway

Enzyme controlled reactions proceed 108 to 1011 times faster than corresponding non-enzymic reactions.

Enzyme structure

- Enzymes are proteins
- They have a globular shape
- □ A complex **3-D** structure

Human pancreatic amylase

The active site

- One part of an enzyme, the active site, is particularly important
- The shape and the chemical environment inside the active site permits a chemical reaction to proceed more easily

Cofactors

- An additional nonprotein molecule that is needed by some enzymes to help the reaction
- Tightly bound cofactors are called prosthetic groups
- Cofactors that are bound and released easily are called coenzymes
- Many vitamins are coenzymes

Nitrogenase enzyme with Fe, Mo and ADP cofactors

The substrate

- □ The substrate of an enzyme are the **reactants** that are activated by the enzyme
- □ Enzymes are **specific** to their substrates
- The specificity is determined by the active site

The Lock and Key Hypothesis

- □ Fit between the substrate and the active site of the enzyme is exact
- □ Like a key fits into a lock very precisely
- □ The key is analogous to the enzyme and the substrate analogous to the lock.
- Temporary structure called the enzyme-substrate complex formed
- □ Products have a different shape from the substrate
- □ Once formed, they are released from the active site
- □ Leaving it free to become attached to another substrate

The Lock and Key Hypothesis

Reaction coordinate

The Lock and Key Hypothesis

- □ This explains enzyme specificity
- This explains the loss of activity when enzymes denature

The Induced Fit Hypothesis

- Some proteins can change their shape (conformation)
- □ When a substrate combines with an enzyme, it induces a change in the enzyme's conformation
- □ The active site is then moulded into a precise conformation
- Making the chemical environment suitable for the reaction
- □ The bonds of the substrate are stretched to make the reaction easier (lowers activation energy)

The Induced Fit Hypothesis

Hexokinase (a) without (b) with glucose substrate

This explains the enzymes that can react with a range of substrates of similar types

Factors affecting Enzymes

- □ substrate concentration
- □ pH
- □ temperature
- □ inhibitors

Substrate concentration: Non-enzymic reactions

The increase in velocity is proportional to the substrate concentration

Substrate concentration: Enzymic reactions

- □ Faster reaction but it reaches a saturation point when all the enzyme molecules are occupied.
- □ If you alter the concentration of the enzyme then V_{max} will change too.

The effect of pH

The effect of pH

- □ Extreme pH levels will produce **denaturation**
- □ The structure of the enzyme is changed
- □ The active site is distorted and the substrate molecules will no longer fit in it
- At pH values slightly different from the enzyme's optimum value, small changes in the charges of the enzyme and it's substrate molecules will occur
- □ This change in ionisation will affect the binding of the substrate with the active site.

The effect of temperature

- □ Q10 (the temperature coefficient) = the increase in reaction rate with a 10° C rise in temperature.
- For chemical reactions the Q10 = 2 to 3 (the rate of the reaction doubles or triples with every 10°C rise in temperature)
- Enzyme-controlled reactions follow this rule as they are chemical reactions
- □ BUT at high temperatures proteins **denature**
- □ The optimum temperature for an enzyme controlled reaction will be a balance between the Q10 and denaturation.

The effect of temperature

The effect of temperature

- For most enzymes the optimum temperature is about 30°C
- Many are a lot lower, cold water fish will die at 30°C because their enzymes denature
- □ A few bacteria have enzymes that can withstand very high temperatures up to 100°C
- □ Most enzymes however are fully denatured at 70° C

Inhibitors

- □ Inhibitors are chemicals that reduce the rate of enzymic reactions.
- □ The are usually specific and they work at low concentrations.
- They block the enzyme but they do not usually destroy it.
- Many drugs and poisons are inhibitors of enzymes in the nervous system.