Antibodies or Immunoglobulins

- * Definition:
 Glycoprotein in serum and tissue fluid
- * Produced by:
 B-lymphocytes in response to exposure to antigen
- * React specifically with antigen
- * Five classes of Antibodies: IgG
 IgM

IgA IgD Joining domains
Disulfide brid

IgG

Properties

- Major serum Ig
- Major Ig in extravascular spaces
- The only Placental transfer Ig
- Fixes complement
- Phagocytes opsonization

IgM

Properties

- First Ig made by fetus and B cells
- Present in colostrum and mother milk protect newly born.
- Fixes complement

IgA

- -Found in serum and body secretion:
 Tears, saliva, gastric and pulmonary
 secretions
 - Major secretory Ig on Mucous surfaces give Local Immunity by coating m.o, bacteria or viruses preventing their adherence to mucosal cells
 - Does not fix complement (unless aggregated)
 - Present in colostrum and mother milk protect newly born.

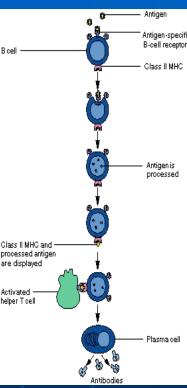
IgE

- Least common serum Ig
 - Binds to basophils and mast cells (Does not require Ag binding)
- Allergic and hypersensitivity reactions
- Parasitic infections (Helminths)
 - Binds to Fc receptor on eosinophils
- Does not fix complement

lgD

- Present in very small amount in serum
- B cell surface Ig
- Does not bind complement

Antibody Production


Clonal selection theory:

- *B-cells display immunoglobulin molecules on surfaces
- *Immunoglobulin serve as receptors for specific antigen
- *The antigen binds to immunoglobulin receptor of B-cells
- *B-cells is stimulated to divide and form a clone
- *B-cells become plasma cells and secrete antibodies
- *Some stimulated B-cells revert to small lymphocyte (memory cells)
- *Memory cells proliferate on re-exposure to same antigen

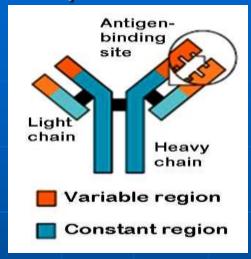
Activation of B-cells

Two mechanisms:

- 1) T-dependent antigen:
 - . Most antigen require T-helper cells to activate B-cells
 - . Antigen is phagocytosed by macrophages or B-cells
 - . Macrophages or B process present Ag to T-cells
 - . These activate T-cells to produce lymphokines
 - . lymphokines (IL-2,IL-4,IL,5) stimulate **B-cells** to divide and differentiate into plasma cells
 - Plasma cells form or
 - differentiate into memory cells
 - . All classes of antibody (IgG,IgM,IgA,IgD,IgE) are T-cell dependant

Activation of B-cells

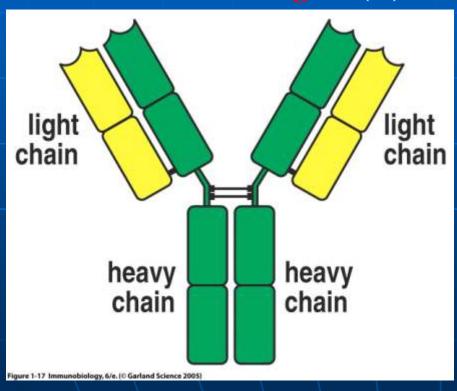
2) T-independent antigens:

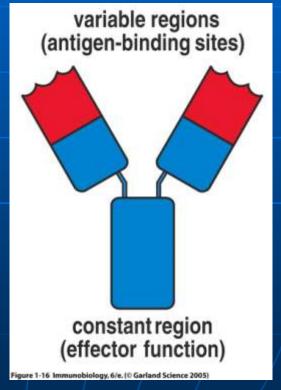

 Activation of B-cells directly without help of T-cells (e.g. bacterial capsular polysaccharides)

IgM antibody is primarily produced

Antibody Structure

Immunoglobulins are glycoproteins made up of


- Four polypeptid chains (IgG):
 - a- Two light (L) polypeptide chains
 - b- Two heavy (H) polypeptide chains
- The four chains are linked by disulfide bonds



- Terminal portion of L-chain contains part of antigen binding site
- H-chains are distinct for each of the five immunoglobulins
- Terminal portion of H-chain participate in antigen binding site
- The other (Carboxyl) terminal portion forms Fc fragment

ANTIBODY STRUCTURE

An antibody molecule is composed of two identical Igheavy chains (H) and two identical light chains (L), each with a variable region (V) & constant region (C).

Amino acid sequences were determined from myeloma proteins.

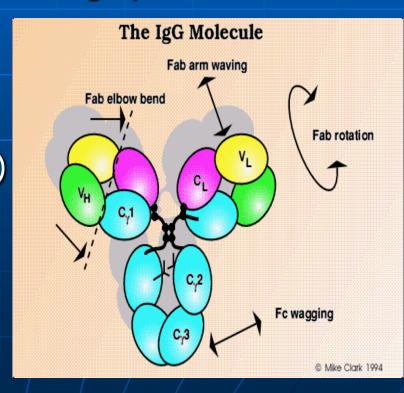
Fig. 1-17,1-16

Variable(V) and Constant (C) Regions

- Each H-chain and each L-chain has V-region and C-region

- V-region lies in terminal portion of molecule
- V-region shows wide variation in amino a. sequences
- Antigenbinding
 site

 Light
 chain


 Heavy
 chain

 Variable region

 Constant region
- Hypervariable region form region complementary to Ag determinant
- It is responsible for antigen binding
- C-region lies in carboxyl or terminal portion of molecule
- C-region shows an unvarying amino acid sequence
- It is responsible for biologic functions

Antibody Fragments

- Fab fragment: antigen binding site
- Fc (crystallizable fragment):
 - a- Complement fixation (IgM and IgG)
 - b- Opsonization (IgG)
 - C- Placental attachment (IgG)
 - d- Mucosal attachment (IgA)
 - e- Binding to mast cells (IgE)

Properties of Immunoglobulins

Property	IgG	IgA	IgM	IgE	IgD
Heavy chain symbol	Υ	a	μ	S	δ
Molecular weight	150 KDa	170-400 KDa	900 KDa	190 KDa	180 KDa
Percentage in serum	75 %	15 %	10 %	0.004 %	% 0.2
Complement fixation	Yes	No	Yes	No	No
Transplacental passage	Yes	No	No	No	No /
Opsonization	Yes	No	No	No	No

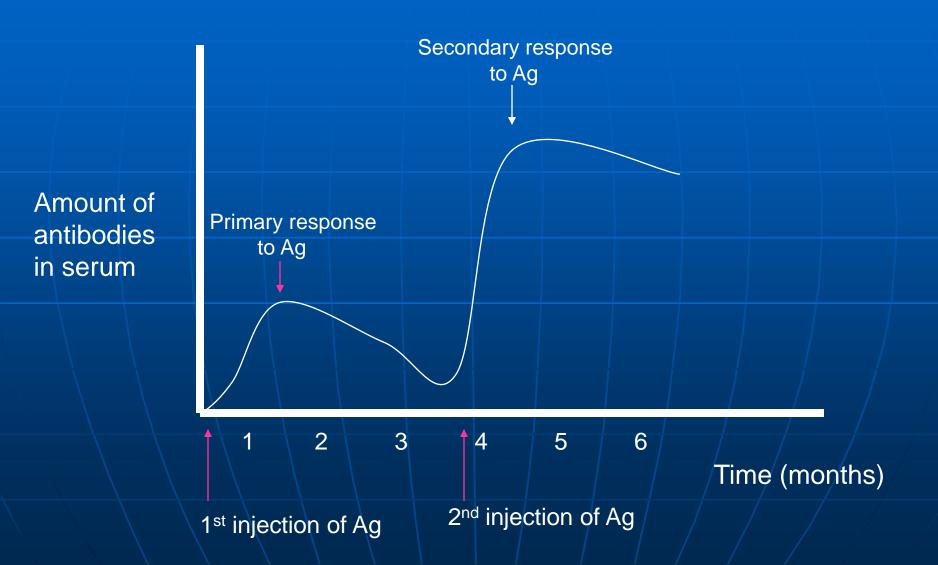
Antibody Diversity

- *Immunoglobulins are protein (antigenic)
- *Immunoglobulins subdivided into:
 - a- Isotypes: Antigenic difference in C-region five immunogl. classes are different isotypes
 - b- Idiotypes: Ag difference in V-region of immunogl.
 - c- Allotypes: Antigenic feature of immunogl. that vary among individual under genetic control

 Ag difference in C-region of H and L chain

Primary and Secondary antibody response

Primary antibody respone


- * first exposure to antigen
- * lag period: days or weeks (slow onset)
- * Small amount immunogl.

 low Ab level with gradual increase
- * Ab Persist for short duration Weeks then decline rapidly
- * Antibody is IgM

Secondary antibody response

- * Subsequent exposure
- * Lag period: hours (rapid onset)
 - * large amount immunogl. high Ab with rapid increas
 - * Persist for long periods (monthes or years)
 - * Antibody is **IgG**

Primary and Secondary antibody response

